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Abstract

Heat conduction in circular cylinders of functionally graded materials and laminated composites is studied with

emphasis on the end effects. By means of matrix algebra and eigenfunction expansion, the decay length that character-

izes the end effects on the thermal filed is evaluated and the 2D solution as a useful approximation assessed.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

When a cylindrical prismatic body is subjected to

thermal loads that do not vary axially, the problem of

heat conduction may be formulated as 2D provided that

the temperature and heat flux over the end surfaces are

specified in the same way as those in every other cross

section of the body. For the 2D solution to be exact

the end conditions cannot be prescribed arbitrarily,

otherwise the thermal field will be disturbed by the end

conditions. Questions arises as to under what circum-

stances can the 2D solution be used as an approxima-

tion. The purpose of this work is to evaluate the

significance of the end effects through an exact analysis

of heat conduction in circular cylinders of functionally

graded materials (FGM) and laminated composites sub-

jected to 2D thermal loads and arbitrary end conditions.

Solutions of heat conduction have been obtained, by

and large, for homogeneous media with isotropy or spe-

cial anisotropy [1–4]. For problems of a multilayered
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system a conventional approach is to express the field

equations in terms of temperature and solve the govern-

ing equation for each layer, and then impose the interfa-

cial continuity and boundary conditions (BC) to obtain

the solution. Following this layerwise approach, one has

to deal with the unpleasant task of determining the

eigensolution of a 2m · 2m matrix, m being the number

of layers. In case the body is anisotropic and inhomoge-

neous, the difficulty in solving the governing equation

has to be overcome to begin with. Herein we present a

state space approach [5,6] for radially inhomogeneous,

cylindrically anisotropic circular cylinders. Based on

the approach, the eigensolution for a laminated system

is determined by simple manipulation of 2 · 2 matrices,

regardless of the number of layers.

It is known that the solution for a finite cylinder sub-

jected to 2D thermal loads with prescribed end conditions

may be determined by superposing the solutions for two

fundamental problems: the first one is a 2D problem of an

infinitely long cylinder subjected to the prescribed 2D

thermal loads; the second one is a 3D problem of the cyl-

inder subjected to homogeneous BC and arbitrary end

conditions. For the purpose of evaluating the end effects

it suffices to consider the second fundamental problem
ed.
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since the first fundamental solution [7] is independent of

z. As a benchmark, an exact solution for the problemwith

a power-law radial inhomogeneity is derived as well,

which enables us to assess the 2D solution as a useful

approximation for the problem.
2. State space formulation

Consider heat conduction in a circular cylinder sub-

jected to 2D thermal loads and prescribed end condi-

tions. Referred to cylindrical coordinates (r,h,z), the

medium is radially inhomogeneous and cylindrically

anisotropic. The Fourier law of heat conduction [1] is

qr
qh

qz

264
375 ¼ �

krr krh kzz
krh khh khz

krz khz kzz

264
375 T ;r

r�1T ;h

T ;z

264
375; ð1Þ

where the comma denotes partial differentiation with re-

spect the suffix variables; qr,qh,qz are the heat flux in the

r, h, z directions; T denotes the temperature; kij = kij(r)

(i, j = r,h,z) are the conductivity coefficients for the ra-

dially inhomogeneous medium.

The heat balance equation for steady-state heat con-

duction without source or sink is

1

r
oðrqrÞ
or

þ 1

r
oqh

oh
þ oqz

oz
¼ 0: ð2Þ

In the state space approach, we choose [Trqr] to be

the state vector and express Eqs. (1) and (2) into a state

equation and an output equation. To this end, first we

express T,r in terms of the state vector using Eq. (1)1
to obtain

r
oT
or

¼ �k�1
rr krhoh þ krzroz 1½ �

T

rqr

� �
; ð3Þ

where oh and oz denote the partial derivatives with re-

spect to h and z, respectively.

Substituting Eq. (3) in Eqs. (1)2 and (1)3 yields

rqh

rqz

� �
¼ k�1

rr

~khhoh þ ~khzroz krh
~khzoh þ ~kzzroz krz

" #
T

rqr

� �
; ð4Þ

where

~kij ¼ krikrj � krrkij:

Substituting Eq. (4) into Eq. (2) and casting the

resulting equation and Eq. (1)1 into a matrix differential

equation, we obtain

r
o

or

T

rqr

� �
¼ �k�1

11

krhoh þ krzroz 1

~khhohh þ 2~khzrohz þ ~kzzr2ozz krhoh þ krzroz

� �
�

T

rqr

� �
: ð5Þ
Eq. (5) is the state equation for the problem. Once it

is solved together with appropriate BC, qh and qz follow

from the output equation, Eq. (4). Three types of BC are

considered: (1) prescribed surface temperature, (2) pre-

scribed heat flux across the surface, (3) linear heat trans-

fer on the cylindrical surfaces and on the ends. These BC

can be expressed in the form

h1 h2r�1
� � T

rqr

� �
 �
r¼a

¼ F aðhÞ;

h3 h4r�1
� � T

rqr

� �
 �
r¼b

¼ F bðhÞ; ð6Þ

~h1 ~h2r�1
� � T

rqz

� �
 �
z¼0

¼ G0ðr; hÞ;

~h3 ~h4r�1
� � T

rqz

� �
 �
z¼l

¼ Glðr; hÞ; ð7Þ

where G0(r,h) and Gl(r,h) are prescribed functions on the

end surfaces z = 0 and l; hi and ~hi are given parameters

to designate various BC; Fa(h) and Fb(h) are the 2D ther-

mal loads on r = a and b. To evaluate the end effects it

suffices to consider Fa(h) = Fb(h) = 0. For a solid cylin-

der the BC on r = a is replaced by requiring the temper-

ature be bounded at r = 0.

For a multilayered cylinder composed of m layers,

the conditions of interfacial continuity require

T rqr½ �kþ1 ¼ T rqr½ �k on r ¼ rk ð8Þ

where rk denotes the outer radius of the k-th coaxial

layer, k = 1,2, . . ., m�1.
3. Piecewise-constant approximation

We seek the solution to Eq. (5) in the form

T

rqr

" #
¼

X1
n¼�1

T nðrÞ
rqrnðrÞ

" #
e�anz=beinh

þ
X1
n¼�1

~T nðrÞ
r~qrnðrÞ

" #
ebnðz�lÞ=beinh; ð9Þ

where Tn(r) and qrn(r) are unknown functions of r, an

and bn are dimensionless parameters to be determined.

It can be shown that an and bn are eigenvalues of the

problem and they are real. Thus, for positive an, as z in-

creases, the influence of the first series decreases and that

of the second series increases, so that the largest positive

value of an dictates the decay from z = 0 and the largest

positive value of bn dictates the decay from z = l. For a

semi-infinite cylinder, l !1, the second series

disappears.

Substitution of Eq. (9) in Eq. (5) yields two sets of

equations:
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d

dq
XnðqÞ ¼ HnðqÞXnðqÞ;

d

dq
eXnðqÞ ¼ eHnðqÞeXnðqÞ; ð10Þ

where c 6 q 6 1, q = r/b, c = a/b, and

HnðqÞ ¼ An þ anqBn þ a2
nq

2C;eHnðqÞ ¼ An � bnqBn þ b2
nq

2C;

XnðqÞ ¼
T nðqÞ
qqrnðqÞ

� �
; eXnðqÞ ¼

eT nðqÞ
q~qrnðqÞ

" #
;
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11
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h1C11ðc; anÞ þ h2c�1C21ðc; anÞ h1C12ðc; anÞ þ h2c�1C22ðc; anÞ
h3 h4
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11
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11

0 0

�~kzzb
�1 0

� �
:

A formal solution to Eq. (10) may be written in Pea-

no expansion [8], however, it is virtually impossible to

determine the transfer matrix from the expansion since

it is not a closed form and the system matrix Hn(q) con-
tains unknown parameters. We now present a useful

scheme based on piecewise-constant approximation of

an arbitrary radial inhomogeneity. The continuity at

the jumps introduced by the approximation is satisfied

by using the transfer matrix. The scheme amounts to

approximating a radially inhomogeneous cylinder by a

multilayered cylinder composed of homogeneous co-

axial layers.

For each homogeneous layer an explicit solution of

Eq. (10) is obtained by setting l = 0 in Eqs. (17)–(20)

in Section 4. At this stage we may express the solution

for the nth harmonics by

XkðqÞ ¼ Pkðq; qkÞXkðqkÞ; qkþ1 6 q 6 qk ð11Þ

where k runs from 1 to m, m being the number of the

coaxial layers; qk+1 and qk denote the inner and outer

radii of the k-th layer. Thus, k = 1 denotes the outer layer

with q1 = 1, k = m denotes the inner layer with qm+1 = c.

The interfacial continuity conditions at q = qk+1 are

satisfied by letting

Xkþ1ðqkþ1Þ ¼ Xkðqkþ1Þ: ð12Þ

Using Eqs. (11) and (12) recursively from the outer

layer inward, we arrive at
XkðqÞ ¼ Ckðq; anÞX1ð1Þ; ð13Þ

where

Ckðq; anÞ ¼
C11ðq; anÞ C12ðq; anÞ

C21ðq; anÞ C22ðq; anÞ

" #

¼
Pkðq; qkÞ;

Pkðq; qkÞCk�1ðqk ; anÞ;

(
k ¼ 1;

k ¼ 2; . . . ;m:

Setting q = c in Eq. (13) and imposing on it the

homogeneous BC at q = c and 1 yields a system of

homogeneous equations, to which a non-trivial solution

exists if
from which the eigenvalues an and subsequently the

associated eigenvectors can be determined.

There follows

T

qqr

� �
¼

X1
s¼1

X1
n¼�1

C11ðq; anÞ C12ðq; anÞ
C21ðq; anÞ C22ðq; anÞ

� �
h4
�h3

� �
� cnse� ansj jz=b þ dnse

ansj jðz�lÞ=b� �
einh; ð15Þ

where the constants cns and dns are determined using the

end conditions.
4. Exact solution for power-law inhomogeneity

An exact solution for the problem can be determined

if the radial inhomogeneity is described by

kij ¼ kijðrÞ ¼ jijðr=bÞl; ð16Þ

where jij and l are real constants. The radial inhomoge-

neity of a linear variation is given by setting l = 1; a

homogeneous material by setting l = 0.

The solution for the first fundamental problem has

been given elsewhere [7]. Here we are concerned with

the solution for the second fundamental problem. With

Eq. (16), we can express qqrn in terms of Tn by using the

first equation of Eq. (10)1 and substitute it into the sec-

ond equation of Eq. (10)1 to obtain

q2 d
2T n

dq2
þ 1þ l þ 2in

jrh

jrr
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q
dT n

dq

þ jzz

jrr
a2
nq

2 þ inl
jrh

jrr
� n2

jhh

jrr
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T n ¼ 0: ð17Þ

The solution of Eq. (17) is

T nðqÞ ¼ q�g½c1nJpðknqÞ þ c2nY pðknqÞ�; ð18Þ
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where Jp(x), Yp(x) are Bessel functions of the first and

second kind of the p-th order, p is real for a real l;
c1n and c2n are constants of linear combination; and

g ¼ l
2
þ in

jrh

jrr
; kn ¼

jzz

jrr


 �1=2

an;

p ¼ l
2

� �2

þ n2
"

jhh

jrr
� jrh

jrr


 �2
#" #1=2

:

There follows

T nðqÞ
qqrnðqÞ

� �
¼ q�g JpðknqÞ Y pðknqÞ

G1ðknqÞ G2ðknqÞ

� �
c1n
c2n

� �
; ð19Þ

where

G1ðknqÞ ¼ jrrq
l½knqJpþ1ðknqÞ þ ðl=2� pÞJpðknqÞ�;

G2ðknqÞ ¼ jrrq
l½knqY pþ1ðknqÞ þ ðl=2� pÞY pðknqÞ�:

Expressing c1n and c2n in terms of Tn(1) and qrn(1)

and substituting it back into Eqs. (19), we obtain

T nðqÞ
qqrnðqÞ

� �
¼

Q11ðq; knÞ Q12ðq; knÞ
Q21ðq; knÞ Q22ðq; knÞ

� �
T nð1Þ
qrnð1Þ

� �
;

c 6 q 6 1 ð20Þ

which is the counterpart of Eq. (13), where

Q11ðq; knÞ ¼ q�g½knF ðq; 1; p; p þ 1Þ
þ ðl=2� pÞF ðq; 1; p; pÞ�=D;

Q12ðq; knÞ ¼ bj�1
rr q�gF ð1; q; p; pÞ=D;

Q21ðq; knÞ ¼ b�1jrrq
l�gfk2

nqF nðq; 1; p þ 1; p þ 1Þ
þ ðl=2� pÞ2F ðq; 1; p; pÞ þ knðl=2� pÞ
� ½qF ðq; 1; p þ 1; pÞ þ F ðq; 1; p; p þ 1Þ�g=D;

Q22ðq; knÞ ¼ ql�g½knqF ð1; q; p; p þ 1Þ
þ ðl=2� pÞF ð1; q; p; pÞ�=D;

F ðx; y; p; qÞ ¼ JpðknxÞY qðknyÞ � JqðknyÞY pðknxÞ;
D ¼ knF ð1; 1; p; p þ 1; knÞ:

Imposing on Eq. (20) the homogeneous BC on q = c

and 1 yields a system of homogeneous equations, to

which a non-trivial solution exists if
h1Q11ðc; knÞ þ h2c�1Q21ðc; knÞ h1Q12ðc; knÞ þ h2c�1Q22ðc; knÞ
h3 h4

���� ���� ¼ 0 ð21Þ
from which the eigenvalues kn and the associated eigen-

vectors can be determined.

For a solid cylinder the terms of Yp(q) in Eq. (18)

must be dropped so that the temperature at the axis

r = 0 is bounded. As a result,
T nðqÞ
qqrnðqÞ

� �
¼

eQ11ðq; knÞ 0

0 eQ22ðq; anÞ

" #
T nð1Þ
qrnð1Þ

� �
;

0 < q 6 1 ð22Þ

where

eQ11ðq; knÞ ¼ q�g JpðknqÞ
JpðknÞ

;

eQ22ðq; knÞ ¼ ql�g knqJpþ1ðknqÞ þ ðl=2� pÞJpðknqÞ
knJpþ1ðknÞ þ ðl=2� pÞJpðknÞ

:

5. Characteristic decay length

A simple measure of the end effects is the character-

istic decay length which is the distance that marks the re-

gion from the ends where the thermal field is no longer

significantly affected by the end conditions. According

to Eq. (9), we may define the characteristic decay length

as

L ¼ b
ln 100

ans
; ð23Þ

which is the distance measured from the end beyond

which the temperature and heat flux reduce to 1% of

their values on the end.

To assess the end effects, we have computed the char-

acteristic decay length for a thin-walled tube (a/b = 0.9)

and thick-walled cylinders (a/b = 0.1; 0.5) under various

BC. The radial inhomogeneity is assumed to follow the

power law in order to validate the numerical results.

Various material parameters were taken. The BC con-

sidered are either temperature-prescribed (T) or flux-pre-

scribed (F) on r = a and b. For brevity, we use the

notation T–T for the temperature-prescribed BC on

r = a and b; T–F for temperature-prescribed on r = a

and flux-prescribed on r = b, and so forth.

The accuracy based on the piecewise-constant

approximation depends on the number of the fictitious

layers taken to approximate the radial inhomogeneity.

It was found that the results are accurate to 10�3 com-

pared with the exact solution by taking less than 20 fic-

titious layers. In the case of a thin-walled cylinder it is

sufficient to take 5 layers to obtain accurate results. Even
modeling the radial inhomogeneity of a thick-walled cyl-

inder by taking as many as 100 layers, it took only sec-

onds in computation using a PC.

Another useful check is to consider a thin-walled

homogeneous tube. With c = a/b ! 1, l = 0, and n = 0
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(symmetric mode), Eq. (17) under the homogeneous BC

can be solved to obtain

a0m ¼ 1

b
m2p2

ð1� cÞ2
þ 1

4

" #1=2

jrr

jzz


 �1=2

� mp
bð1� cÞ

jrr

jzz


 �1=2

; ðc 6¼ 1Þ ð24Þ
Table 1

The first 5 eigenvalues for hollow cylinders under temperature-prescr

a/b l k01 k02

0.1 0 3.3139 6.8576

0.5 3.3597 6.8889

1 3.4907 6.9813

2 3.9409 7.3306

5 5.7649 9.1067

10 8.7715 12.3386

0.5 0 6.2461 12.5469

0.5 6.2554 12.5517

1 6.2832 12.5664

2 6.3932 12.6247

5 7.1116 13.0261

10 9.1900 14.3733

0.9 0 31.4115 62.8296

0.5 31.4126 62.8302

1 31.4159 62.8318

2 31.4292 62.8385

5 31.5217 62.8849

10 31.8499 63.0502

Table 2

The first 6 eigenvalues for hollow cylinders under flux-prescribed (F–

a/b l k00 k01 k02

0.1 0 0 3.9409 7.330

0.5 0 4.2226 7.572

1 0 4.5223 7.846

2 0 5.1423 8.457

5 0 6.9880 10.417

10 0 9.9361 13.589

0.5 0 0 6.3931 12.624

0.5 0 6.4743 12.668

1 0 6.5720 12.721

2 0 6.8138 12.855

5 0 7.8450 13.471

10 0 10.1889 15.110

0.9 0 0 31.4292 62.838

0.5 0 31.4391 62.843

1 0 31.4512 62.849

2 0 31.4821 62.865

5 0 31.6271 62.937

10 0 32.0408 63.147
The first few eigenvalues of the hollow cylinder for

various a/b and l are given in Tables 1 and 2. The

numerical results for l = 0, a/b = 0.9 agree well with

those obtained according to Eq. (24). The value of l
has little influence on a thin-walled tube. This is ex-

pected because the radial inhomogeneity through a short

thickness of a thin-walled tube generally should not

exhibit marked variation. The effects of radial inhomo-

geneity and cylindrical anisotropy are insignificant for
ibed (T–T) BC

k03 k04 k05

10.3774 13.8864 17.3896

10.4012 13.9055 17.4056

10.4720 13.9626 17.4533

10.7484 14.1886 17.6433

12.3671 15.6263 18.9099

15.7003 18.9806 22.2197

18.8364 25.1228 31.4080

18.8397 25.1253 31.4100

18.8496 25.1327 31.4159

18.8889 25.1624 31.4397

19.1625 25.3692 31.6058

20.1128 26.0963 32.1928

94.2463 125.6626 157.0787

94.2466 125.6629 157.0790

94.2478 125.6637 157.0796

94.2522 125.6670 157.0823

94.2831 125.6902 157.1009

94.3935 125.7731 157.1671

F) BC

k03 k04 k05

6 10.7484 14.1886 17.6433

3 10.9482 14.3553 17.7847

6 11.1835 14.5553 17.9561

4 11.7385 15.0441 18.3834

9 13.7024 16.9396 20.1652

3 17.0038 20.3208 23.5863

7 18.8889 25.1624 31.4397

3 18.9184 25.1846 31.4575

4 18.9544 25.2118 31.4793

5 19.0457 25.2808 31.5347

1 19.4711 25.6038 31.7946

0 20.6522 26.5148 32.5330

5 94.2522 125.6670 157.0823

4 94.2555 125.6695 157.0843

5 94.2596 125.6726 157.0867

0 94.2699 125.6803 157.0928

8 94.3185 125.7167 157.1221

0 94.4582 125.8216 157.2060
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the higher modes for a moderately thick cylinder (a/

b = 0.5) and a thin-walled cylinder (a/b = 0.9). It can

be shown that a0 = 0 is an eigenvalue under the F–F

BC and the associated eigenvector is composed of a uni-

form temperature and a linearly distributed temperature

in z. Indeed we found in Table 2 that the smallest eigen-

value is zero and the characteristic decay length is infi-
Table 3

Characteristic decay length (L/b)(krr/kzz)
1/2 for hollow cylinders under

a/b l = 0 0.5 1.0

0.1 1.3897 1.3707 1.3193

0.5 0.7373 0.7362 0.7329

0.9 0.1466 0.1466 0.1466

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0 0.2 0.4

(b a )

( l
/b

)(
rr

/
zz

)1/
2

T-T T-F F-T

κ
κ

−

Fig. 1. Characteristic decay length with respect to the wall thickness o

conditions.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.1 0.3 0.50.2 0.4

(b a )

( l/
b

)(
rr

/
zz

)1/
2

T-T F-T T-F

κ
κ

−

Fig. 2. Characteristic decay length with respect to the wall thickness o

boundary conditions.
nite. This indicates that the end effects are far-

reaching; it affects the thermal field over the entire cylin-

der. Thus, when the heat flux is specified on the inner

and outer surfaces, the thermal field must be determined

through a 3D analysis.

The values of kns under the T–T BC is given in Table

3, in which the values are less than 0.8, except for the
temperature-prescribed (T–T) BC

2.0 5.0 10.0

1.1686 0.7988 0.5250

0.7203 0.6476 0.5011

0.1465 0.1461 0.1446

0.6 0.8 1.0

/b

π

π/2

f homogeneous hollow cylinders (l = 0) under various boundary

0.7 0.90.6 0.8 1.0

/b

π

π/2

f radially inhomogeneous hollow cylinders (l = 5) under various
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cylinder of a very large thickness (a/b = 0.1), thus the

decay length for an isotropic hollow cylinder is less than

b. With krr = khh = 0.72 W/(m Æ K), kzz = 4.62 W/(m Æ K)

for a typical unidirectional graphite/epoxy composite,

the decay length is less than 2b. In the case of a very

thick graphite/epoxy composite cylinder (a/b = 0.1,

l = 0;0.5) under the T–T BC, the decay length is about

3.5b. In this case, the significance of the end effects de-

pends on the length–diameter ratio of the cylinder.

Figs. 1 and 2 show the decay length with respect to

the wall thickness of a homogeneous hollow cylinder

(l = 0) and a radially inhomogeneous one (l = 5) under

various BC. The decay length for the cylinder under the

F–F BC is infinite and is not shown in the figure. In the

case of the F–T BC, the decay length depends on the

ratio of a/b. It could be as long as 15b for a homogene-

ous cylinder and tends to infinity for l = 5. In these cases

a 3D analysis of the problem is necessary. The dashed

lines in Figs. 1 and 2 are the lines according to the sim-

plified formula for the thin-walled tube. Notably, the

decay length of a hollow cylinder with a wall thickness

(b�a)/b < 0.2 under the T–T BC is about half of those

under the F–T and the T–F BC. This can be understood

by considering a segment of a thin-walled tube. When

the inner radius of the tube is large, the segment may

be regarded as a thin plate. Under the homogeneous

T–T BC, there should be no heat flux in the middle plane

of the plate because of symmetry. Thus, a plate of thick-

ness 2h under the homogeneous T–T BC may be viewed

as a plate of thickness h under the homogeneous F–T BC

or under the homogeneous T–F BC. When the thick-

nesses of the plate in three cases are the same, the decay

length of the plate under the homogeneous T–T BC

must be a half of those of the other two.
6. Conclusions

We have studied the end effects of heat conduction in

a hollow or solid circular cylinder of FGM and lami-
nated composites under 2D thermal loads and arbitrary

end conditions. The significance of the end effects can be

evaluated through a characteristic decay length. When

the temperature is prescribed on the lateral surfaces,

the end effects are confined to a local region near the

ends and the 2D solution can be used to evaluate the

thermal field in the region of a characteristic decay

length from the ends. For other cases the end effects

are far-reaching and the problem must be treated as 3D.
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